a2 United States Patent

Ware et al.

US009465961B2

US 9,465,961 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

METHODS AND CIRCUITS FOR SECURING
PROPRIETARY MEMORY TRANSACTIONS

Applicant: Rambus Inc., Sunnyvale, CA (US)

Inventors: Frederick A. Ware, Los Altos Hills,
CA (US); Brian S. Leibowitz, San
Francisco, CA (US); Pradeep Batra,
Santa Clara, CA (US); Trung Am Diep,
San Jose, CA (US)

Assignee: Rambus Inc., Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 190 days.

Appl. No.: 14/098,628
Filed: Dec. 6, 2013

Prior Publication Data

US 2014/0173238 Al Jun. 19, 2014

Related U.S. Application Data

Provisional application No. 61/738,698, filed on Dec.
18, 2012.

Int. CL.

GO6F 12/14 (2006.01)

GO6F 21/85 (2013.01)

GO6F 21/78 (2013.01)

G09C 1/00 (2006.01)

HO4L 9/06 (2006.01)

HO4L 9712 (2006.01)

U.S. CL

CPC ... GO6F 21/85 (2013.01); GO6F 21/78

(2013.01); G09C 1/00 (2013.01); HO4L 9/065
(2013.01); HO4L 9/12 (2013.01); GO6F
2221/2107 (2013.01); HO4L 2209/12
(2013.01); HO4L 2209/56 (2013.01)

Field of Classification Search
CPC GO6F 12/1408; GO6F 21/78;, GO6F 21/85;
GO6F 2221/2107

100 ~

USPC ottt 711/163
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,847,981 A 12/1998 Kelley et al.
7,284,135 B2 10/2007 Evans et al.
7,373,668 Bl 5/2008 Trimberger
2002/0101996 Al* 82002 Takada HO04L 9/065
380/277
2004/0090827 Al* 5/2004 Dahlen ... GO6F 11/2061
365/200
(Continued)

OTHER PUBLICATIONS

“Linear Feedback Shift Register,” Wikipedia, Source: http://en.
wikipedia.org/w/index.php?oldid=500429122, Received Mar. 5,
2014. 9 pages.

(Continued)

Primary Examiner — Yong Choe
(74) Attorney, Agent, or Firm — Silicon Edge Law Group
LLP; Arthur J. Behiel

(57) ABSTRACT

Described are systems and method for protecting data and
instructions shared over a memory bus and stored in
memory. Independent and separately timed stream ciphers
for write and read channels allow timing variations between
write and read transactions. Data and instructions can be
separately encrypted prior to channel encryption to further
secure the information. pad generators and related crypto-
graphic circuits are shared for read and write data, and to
secure addresses. The cryptographic circuits can support
variable data widths, and in some embodiments memory
devices incorporate security circuitry that can implement a
shared-key algorithm using repurposed memory circuitry.

7 Claims, 22 Drawing Sheets

Wite data 125
(e.g., ~2565)

Wiite-Data
Encryptor

Memory Controller 105

Read data 145
(e.g., ~256b)

Read-Data /
Decryptor

Memory Link 115

Memory 110

Memory Core 175

PAD - TIME

TTTITTTT TIITITTITTITITTT
g I

I
HHHH HHHHHHHR Data L GEN

US 9,465,961 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2007/0067644 Al
2007/0101434 Al

3/2007 Flynn et al.
5/2007 Jevans

2007/0294531 Al* 12/2007 Altenceeevnne GO6F 7/582
713/168

2008/0162947 Al 7/2008 Holtzman et al.

2010/0082911 A1* 4/2010 Das ... G11C 7/02
711/154

2010/0310076 Al 12/2010 Barzilai et al.
2010/0322411 A1* 12/2010 Lubberhuizen HO4L 9/0631

380/28
2012/0008772 Al* 1/2012 Sugahara GO6F 21/79
380/46
2012/0191984 Al* 7/2012 Ohyama HO4L 9/0637
713/189

OTHER PUBLICATIONS

“Multiply—Accumulate Operation,” Wikipedia Article, Source:
http://en.wikipedia.org/w/index.php?oldid=504807757,
Mar. 5, 2014. 3 pages.

Received

“Public-Key Cryptography,” Wikipedia, Source: http://en.
wikipedia.org/w/index.php?oldid=510017539, Received Mar. 5,
2014. 11 pages.

“Reverse Engineering,” Wikipedia, Source: http://en. wikipedia.org/
w/index.php?0ldid=501283497, Received Mar. 5, 2014. 9 pages.
“Trivium (Cipher),” Wikipedia, Source: http://en.wikipedia.org/w/
index.php?0ldid=484313678, Received Mar. 5, 2014. 4 pages.
Bailey et al., “Cryptography in Modern Communication Systems,”
Presented at Texas Instruments DSPS FEST, Houston, TX, Aug.
1999. 15 pages.

Crenne et al., “Configurable Memory Security in Embedded Sys-
tems,” ACM Transactions on Embedded Computing Systems, vol.
V, No. N, Sep. 2011. 26 pages.

Goodin, Dan, “Ex-Army Man Cracks Popular Security Chip: How
to Open Infineon’s Trusted Platform Module,” Security, Feb. 17,
2010, retrieved from the Register online at http://www.theregister.
c0.uk/2010/02/17/infineon_ tpm__crack/. 3 pages.

Neuhauser et al., “Reduced Redundant Arithmetic Applied on Low
Power Multiply-Accumulate Units,” EHAC’12/ISPRA/Nanotech-
nology’ 12, World Scientific and Engineering Academy and Society,
Stevens Point, Wisconsin, 2012, pp. 204-209. 6 pages.
STMicroelectronics, “AN1823 Application Note: Error Correction
Code in NAND Flash Memories,” May 2004. 14 pages.

* cited by examiner

US 9,465,961 B2

Sheet 1 of 22

Oct. 11, 2016

U.S. Patent

R

| | |
| S I N e o | N0 i
IINIL - avd HEDN o avd _
! L ST [TIT 1T | S\
| N p— | | | mu NI !
w g Y| e T e o
4
o =4 T | | e
N 01T Aowspy PAN
Ol Bleq pesy pajdAiouy Gl J yurq Aowepy —” | og1 ereq s perdiious
N PAN
T TS — =TT T —- Ty T T T T T e T T o !
|
_m bogr . AT < 4] !
_ L
_ 09T N3O vmm:_m> _ lodAioaq 10}0AI0U __
| WL gyg |7 Ped / ejeq-peay e |
! MNIT | _
(q95g~ “69) (q95g~ "679)
G¥ 1 Blep pesy 07 Jal0nu0)) Aows|y GCl BIep S

U.S. Patent Oct. 11, 2016 Sheet 2 of 22 US 9,465,961 B2

200 —¢

Sync Link-Pad Generators 205

v

Prepare WR Request and Data to Memory Address 210

v

Encrypt WR Data Using First Pad Value 215

v

TX Request and Encrypted WR Data to Memory 220

v

Decrypt WR Data Using First Pad Value 225

v

Write Decrypted Data at Address 230

v

Prepare RD Request to Memory Address 235

v

Read Data from Address 240

v

Encrypt Read Data Using Second Pad Value 245

v

TX Encrypted RD Data to Controller 250

v

Decrypt RD Data Using Second Pad Value 255

Fig. 2

US 9,465,961 B2

Sheet 3 of 22

Oct. 11, 2016

U.S. Patent

¢ bl

anaannannnannnnnfiisaanns

08T Joidfioug H—IITITTTTTTTITTT] [TTTIT11 LT J0ydAiag
INNL — ’ ' — JNIL
ele(-pesy 7T 0107 Alowo BJRQ-91M
N 01 AMowsapy VAN
GZE eled peay 0cg Eleq SjUM
paydAioug-a01m | paidAioug-aom |

Y

GoT Jodhioeq
ele(-pesy

ANIL —

88¢

| %E03 |

96¢

gee a0)dhiosg

PV g O

l

(0962) G¥) erep peay

TOE Je|lonuo)) Aloway

R_V

021 JoidAioug

megomm [N

88¢

| §7E003 |

96¢

1PPY —

01¢ J0)dAioug

ansnyg [0d

T

(4967) G2 1 E1ep UM

US 9,465,961 B2

Sheet 4 of 22

Oct. 11, 2016

U.S. Patent

SNIBA [— dYMS
QI $$800id - dId

BN[EA JUl — AIMD
aNeA JUl =AM

S
I I~ i
| | 1l |
| I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_
_ ! eep _H_H_H_H “ BJep
| _ [T [TIT %
I I I
_ _mmevum [TTITTTTIITT I I TI0-TTT1
b € -
m Ve 8407 Alowsp
'l _ GIT uvd
1| Gbb
_ ey | swil — o o k— sl awi] — 0 o k— i
_ JoidAineq JodAineq JoidAineq JodAineq
| EATNT — K— ZAINT _ AINT — K— OAIMT
! 0ry fowspy
(sMuir wa
T N R A % sepomuey . |
| Wl o e ST aw —{ o !
|
_ AT — _oa\n_hocm_ Bu%__ocm_ e 3y AT = hou%__ocm_ _oﬁ;_bcm_ e oATyT
|
_ —
| mmw |0cc003 | | ogvavd | | ruvd | | GTE003 |
| 5 | 1 | o5 soidfous ppy | o7 oo ooy | | | | A
| A 33 AP EI S | | s [T | | o [AP
! Qg —l_oswa 100 “ | 100 = SWA L g4
| | VNS _ . VS T
|
! Gl elep pesy —JLmod 1 h_ % L MOY_J1_ Gz BIep BUM
i
|

US 9,465,961 B2

Sheet 5 of 22

Oct. 11, 2016

U.S. Patent

% bI1oo [Mod \

/
/ _ (bldems-100
{ldems-100)

_ [| uonaun4 /

~

(2¥ tvd 0) sseIppe i paydhious N

| H-NWN109 _.....“. HMOd | HYNvE | HoINwy

gy 614

~~
=
3
=
Q
I
e}
O

[lidoHAevD S\)
[l440HwsewyD -~]

-—

H

JHOHADHYD Y, 4H0-HISBW-YO

N

ToTI0 SNV o

oS0 YNV A

135440 H

; ST TN SV
J9SHO 100

_ _ _ | dems YNvY _ :

957 357 F k| v TERS SNV 6%

dYMS dYMS k—| d¥MS | dvms B e R
A e .

| +nwn10o | dmod | doinvg | doinw

(qzg~ “6'8) 0y SsaIppe Bm—’

dYMS-HA-VO dYMS-HASEW-YO

,” [ldvmS-HASNYD
\ [dvMS-Hxs

-~

~

I

BW-YD)

o

*— 06t

U.S. Patent Oct. 11, 2016 Sheet 6 of 22 US 9,465,961 B2

500 —g
Wdata-256 Waddr-80
I @
initialize —>
MHAZE 71 | INK PAD GEN 515
LKEYy | @@ Data Buffer & 4.1 Add Buffer & 4:1
N serializer 535 serializer 540

b LPAD5Q |
@ Wdata-64 Waddr-20

2 U @
LPADWEY 5~ s 5303 LPADW-20
@
2:1 serializer 545 2:1 serializer 550

@

DQ-32 CA-10
Memory Controller 505

Memory 510 N
DQ-32 0 CA-10
1:2 deserializer 565 1:2 deserializer 575
Welata-64 Waddr—20
LPADW-64 ., LPADW-20
€9
a2 1:4 deserializer 1:4 deserializer
Q pipeline 570 pipeline 580
b LPADS60 |
/l\
LKEYw — Q@ Wdata-256 Waddr-80
e LINK PAD GEN 555
initialize — Memory Core 175
|

Fig. 5

U.S. Patent Oct. 11, 2016 Sheet 7 of 22 US 9,465,961 B2

600 —¢q
initialize Rdata-256 Raddr-80
LKEY
\r 'R—
84-bit Link-Pad
Generator 51_5 Data Buffer & 1:4 Add Buffer & 4:1
T deserializer 635 deserializer 615
) LPADs0 | @ Rdata-64 Raddr-20
@ LPADR-20

®
D

— 525 530
Pipeline | LPADR-64 &
640 @

DQS-CK Domain Xing and S
1:2 deserializer 630 2:1 serializer 550

DQ-32 CA-10
%
Memory Controller 605

@ @
Memory 610
DQ-32 @ CA-10
2:1 serializer 545 1:2 deserializer 575

LPADR-20 @ Raddr-20
LUK

625
LPADR-64 Q)
69 Rdata-64
2 4:1 serialize 1:4 deserialize
@ pipeline 620 pipeline 580
b LPaDs60 |
/I\
4
84-bit Link-Pad @D Rdata-256 Raddr-80
t
Generalor 555 Memory Core 175
LKEYr
initialize

Fig. 6

US 9,465,961 B2

Sheet 8 of 22

Oct. 11, 2016

U.S. Patent

8l

Ll

9L

Gl

/B4

vl

€l

Zl

Ll 0L

e

9G¢-€1Epy

62|92

1z|9z|sz|ve

ez|zz|1z]0z

61 [81]21 |0l

wF_NF

gt |yl

FF_OF_W/fw

elz]1]o

-z | v

¢-| 9- | vo-uavd1

g

\

9-Ejepy

Vi

G677

2e-0a

08-1ppey

62|92

1z|9z|sz|ve

ez|zz|1z]0z

IEAED

s vifer|z

1o 6]

1|z e | v

¢- | 9- | 0z-yavd1

IFIEIE

AFIEIE

0c-1ppey

K

01-v0

apIS Alowasp

apIS Jofjonuo)

e

2e-0a

se|ve|ec|ee

1¢| 0|6z |8z

Nm_m&_mm_vm

ez|zz|1z|oz

EAMED

sifvi]er|a

wlo]slel/

elz]|i]o

¥9-avd1

007

= |

S

»

¥9-EJEPY

PR

9G¢-Elepy

HIE

2]

0l-v0

se|ve|ec|ee

1¢|oc|6z |8z

1z|9z|sz|ve

ez|zz|1z|oz

EAMED

sifvi]er]a

wlos]se

elz]|i]o

02-davdl

olufo]y

o|¥]

e

0¢-1ppey

08-1ppey

U.S. Patent Oct. 11, 2016 Sheet 9 of 22 US 9,465,961 B2

800 —g
2 x3
& 2B Wdata-256 Rdata-256
= = o
Ll ——
84-bit LINK PAD @’% é@
GENERATOR 515 Write Buffer & 4:1 Read Buffer & 1:4
) 3 serializer 535 deserializer 635

[PADRW-64 @‘P “él 815
525

Clk LPAD520 | Wdata- 6 Rdata-64 &
820
LPADRW-64 Pipeline
' 525
@

2:1 serializer 545 1:2 deserializer 630

Memory Controller 805 $

1:2 deserializer 565 2:1 serializer 545

LPADRW-64 62
NS U
v A
& €9
Wdata- 64 Rdata-64
1:4 deserialize 4:1 serialize
820 4 v e 18
Clk 84-bit SﬁK PAD pipeline 570 pipeline 620
GENERATOR 515 @
|}
Wdata-2 Rdata-2
LPAD 520 | data-256 data-256
’l‘ ’l‘ Memory Core 175
z 8 i
L S
=

PADen

Memory §10

Fig. 8

US 9,465,961 B2

Sheet 10 of 22

Oct. 11, 2016

U.S. Patent

¢ | z | vo-muavd

19-B1EPM
9GZ-E1epw

9Gz-elepy
Apmyavdl
vo-e1epy

2€-00
9pIS 18]10/U0D

apIg Alowsa|y
2e-0d

- | ¥9-MAAvYd1

9-E}EPY
9G¢Z-E1EpYy
9GZ-E1epw
79-B1EPM

6014
U UL U U U UL WL e
1z|9z|sz|vz|ez|ez|iz|oz]er ot |2]ot]si][z o] 6o 2]o]s]w
WA,
_ A
mn psgo [0 fa /1 o
“ LY AY
_ siiwle[a|ufofe]e]z]o]s]v]ele]s Nol)|e]e]r
i D aN
! 4597
S S et T=- 3
80454777l A e~
sz|ez|iz]oz]sr[ai | [ot]sivi eteu|oN s [e |z o]s|v]ele]] o]i]|e]e]r
T
AY \\
A

US 9,465,961 B2

Sheet 11 of 22

Oct. 11, 2016

U.S. Patent

01 b4
Lol aalelols]v]elelelele]e]e]|e]e]z]|romuava
T e 79-B1ePA
,/ , 9GZ-E1EPM
. 9GZ-E1epY
el a|e]o]s|v]e]elele]elele|e]lele] o ,7.?-_?-__- - -] -] ApMYavdT
G DN -
7T 26-00
|||||||||||| ||¢||||J||||||%_mh__e%o
apIg Alows|y
4444 ol B4 2000

Lol alelolslv]ele\elele]elelelele]Loli-{1-]1-]1-|ro-muavd
e~ y9-elepy
, 9GZ-e1epy
— / 95Z-E1BPM
e p9-e1epA

/ooov

US 9,465,961 B2

Sheet 12 of 22

Oct. 11, 2016

U.S. Patent

AE

s

[o] Atowapy

qze 0/11 @lo)
21ep ! Mmmw
peay LI |

w | —p—Daouep] 7
[9:G}ped W&: 5911 Jev_w“m%&
XNnw 6 O@—_\ @ Xnw

Boy
ow:: mm:@

Garll Gerl
NI 0L N3O
avd avd
T [1] AMowspy T
AT AT

[0:2loa @W

[g:siloa (B

>—.——u

0rH

[o] Mowspy

(I

[2] frowapy

(T

[g] Arowsyy

[8:esloa W [9g:e9loa % [v9:12loa @W

) [0:12]oa mmv

oril
N3O
avd

ADAT

elead Eleam

\W [0:}2]ped

GOL T Joj[0uon Alowayy

ccll
N3O
avd

_I
AT

Sheet 13 of 22 US 9,465,961 B2

U.S. Patent Oct. 11, 2016

1200 —¢q
Wdata-64 Memory Controller 1205
Configurable Interconnect 1220
Wdata[63:55]) Wdata[7:0]
4/8/16/32 4/8/16/32
11001 In[7:0] In[7:0]
12101198] | ge@ (X 1)
(Not Used) 1210[7] 1210[0
Out[7:0] - Out[7:0]
egister
4/8/16/32 13& 1 4/8/16/32
Configurable Interconnect 1230

@f} DQ[63:0]

DQ[63:55] DQ[7:0]
Memory Device 1215[0]
4/8/16/32 Y
In[7:0]
YY) 1210 Read
Memory out[7:0]
Device
1215[7 Write C4/8/16/32 4/8/16/32
Core 1170
| demux | | |
Write [TIIIT] Read
data ||||||| data
32b TTTTTT1 32b

Fig. 12

U.S. Patent Oct. 11, 2016 Sheet 14 of 22 US 9,465,961 B2

1315
Clk—p 1/N D Pad Generation 1310
N 1325
w—{ WIDTH JWSel
Cnt @ In[4/8/16/32]
LN CONT “3\ Adjustable multiplexer 1313 / 4/8/16/32
1320 LPAD
i ’\1330
Variable-Width Crypto Circuit 1300 Out[4/8/16/32]
1305 —
links (W) N WSel Cnt
4 16 0 1
8 8 1 2
16 4 2 4
32 2 3 8

Fig. 13

U.S. Patent Oct. 11, 2016 Sheet 15 of 22 US 9,465,961 B2

1300 —g 1315
Ck—j{ 1N |—p PadGeneration 1310 |

T R " T
i | 2-1 mux 1400 OSN i
! |
R |
! |

|
: regl2] :
! | 2-1 mux 1405 KO~ |
l ® !
|
| 2@ !
|2 ® ® |
i L= reg[1] !
) ©g | 21 mux 1410 O~
I — |
LPAD32 |) @4:_ ElLe ® |
LPAD16 . !
LPADB{ —@n @ D reg] | !
LPAD4 /-~ | 2-1 mux 1415 .
—@— |
| @ |

|
Wsel ——] |
|
| A~ A I
Cnt ! Reg 1425¢-1-Clk !
Clk CNT 1 D i
1320 | ADD 1430 |
I o !
| Adjustable Mux 1313 @ !

US 9,465,961 B2

Sheet 16 of 22

Oct. 11, 2016

U.S. Patent

m—‘ .@_m 20l 0J
: N
M.. lllllll % .m ‘ﬂlnlm.“.ll IIIIIIIIIIIIIIIIIIIII J/I/. IIIIIIIIIIIIIIIIIIIIIIII
==
(1 Coawa] &
AT
; [N 4 &
il
!l s
] [o 7T (s oo
07 i song
oogh —Y 1O 101000101 011

SVBUSIUI YD

G161

wormr

US 9,465,961 B2

Sheet 17 of 22

Oct. 11, 2016

U.S. Patent

9} b4 v

Szor
o]

[o

|mm T — o oo o—s—————-————- = bezlavd [r—----m--mmmoom— oo .
| 19T ¥S41 ! | 097 ¥S41 !
| _ i “
_ _ _ © |
| |
Ll d b ey | | pleszglo | P [16:11D _ !
| @ | ST uonouny | @ !
| } ! Buiysely JesurT-uoN | [4 _
| | | “
I | | I
_ _— _ _ — _
_ _ I I
_ " " I
|
i ! GH Gp &) Gp) | 19 (9 “

|
_ D (= _ 20 |0 ! !
| B cE 0 BE O ORR 12 218 |
| B SE kB BB " 2|& “
| | — _ | |
_ _ I

U.S. Patent Oct. 11, 2016 Sheet 18 of 22 US 9,465,961 B2

5}
ot o
=
= S
=
~ a'd
~N
-
et
x| &
B
&
S 9 N~
= & ~
AN IR
A (@)
X LL

Non-linear 1615
@ PAD[2:91]

1705

97
@D
@ P[2:91]

F}> P[1:97]

Clk

1700 —¢

US 9,465,961 B2

Sheet 19 of 22

Oct. 11, 2016

U.S. Patent

g} bi4

80BU8IUI DQ

_H__H__H___H__H__H___H__H__H___H__H__H__H__H__H___H__H__H:_H__H__H:_H__H__H___H__H__H_

// G081

0181

12010 | __wo:m_ __@o:m_ __o:_m _ _::_m I _N:_m _ __m:_m_ _::_m_ __m:_m_ _a:_m_ _:Em_ _a:z_

«J T

_,l

1T

| lozly | | a:m | | _w:m | | E_m || §_m | | F,:m | | E_m | | _m:m || w:m | ::m | | _o:m | _m_m _

| lo6lo | _:%_ __N%_ __m%_ _ :z | | wz | | am | | zm | | _mz | | az | | Em | | az _

1

»— 003}

U.S. Patent Oct. 11, 2016

Sheet 20 of 22

1900 —
with W-bit datapath
Bank 0 Bank 1
Sense = =
K-bit Multiplier K-bit Multiplicand
amps
Column access Column access
1910
2b RShift register
1913
2D 2b encode
Private Key
NVM 1903 1915
-bit adder
D 4920
2b RShift register
Public Key, Sequencing Column
and Column addressing access

from controller Sense
amps

2*K-bit Product

|

CAinputs

—

Bank 2

2W additions per column cycle tec

Fig. 19

US 9,465,961 B2

Sense
amps

US 9,465,961 B2

Sheet 21 of 22

Oct. 11, 2016

U.S. Patent

it

N

0v0c

0¢ %9€1S dOd

OHONONONO O/@/O @) O_

N

000¢ X9€IS ASL

US 9,465,961 B2

Sheet 22 of 22

Oct. 11, 2016

U.S. Patent

YAE

OIS ASL 404

AIAnDBUU0D JeuIS |
vsyA —F1vs
<o,// o M Y0 ¥sy9)
/
v Aewnd ayod_| LevD M@(
1R
mw<p/mmFO\ 5y sy
/(\ /
vsoq[{T*0a
N Mv ¥0a vsOq
Dq Aewug soal_| |odH
mmOn_”{\\mmOn_ \Aﬂ —
pra Sl V2 ¥0d
P /(\ L
» 0000
S80I 7 0)dAip
WY@ pue 8oiAep 03 OWVEA |-\ wyya
usamaq syuI| A1epuodss 40d
001 31NACI

US 9,465,961 B2

1
METHODS AND CIRCUITS FOR SECURING
PROPRIETARY MEMORY TRANSACTIONS

FIELD

The subject matter disclosed herein relates generally to
the field of computer memory.

BACKGROUND

Computers generally include a processing unit (PU) that
reads instructions and data from a memory, and that executes
the instructions with reference to the data to obtain some
result. Myriad applications are available for execution on
personal computers, gaming machines, set-top boxes, and
handheld devices, for example. Computer systems are also
embedded into an ever increasing share of consumer and
military hardware.

Computers and the applications that run on them are
complex, and their development is both time-consuming and
expensive. Entities who develop such hardware and soft-
ware understandably want to enjoy the fruits of their efforts
and investments. The same is true for entities that collect and
maintain proprietary data that may be stored in memory.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter disclosed is illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numer-
als refer to similar elements and in which:

FIG. 1 is a computer system 100 that protects data and
instructions shared between a memory controller 105 and a
memory 110 via a memory link 115 using separate stream
ciphers (or cyphers) for write and read channels.

FIG. 2 is a flowchart 200 outlining the operation of an
embodiment of memory system 100 of FIG. 1.

FIG. 3 depicts a memory system 300 that includes
memory 110 of FIG. 1 and a memory controller 305 in
accordance with another embodiment.

FIG. 4A depicts a memory system 400 in accordance with
yet another embodiment.

FIG. 4B depicts an address encryptor 490 that can be used
for e.g. encryptors 415 and 450 of FIG. 4A.

FIG. 5 depicts a memory system 500 in accordance with
an embodiment in which shared security resources are used
to encrypt write data and write addresses at a controller 505,
and to decrypt the encrypted write data and addresses at a
memory 510.

FIG. 6 depicts a memory system 600 in accordance with
an embodiment in which shared security resources are used
to secure read data and read addresses shared between a
controller 605 and a memory 610.

FIG. 7 is a waveform diagram illustrating the read timing
for an embodiment of system 600 of FIG. 6.

FIG. 8 depicts a memory system 800 in accordance with
an embodiment in which shared security resources are used
to secure both write and read data shared between a con-
troller 805 and a memory 810.

FIG. 9 is a waveform diagram 900 illustrating the opera-
tion of memory system 800 in accordance with an embodi-
ment in which link-pad generators 515 advance on each
clock cycle (e.g., AND gates 820 and signals PADen are
omitted).

FIG. 10 is a waveform diagram 1000 illustrating the
operation of memory system 800 in accordance with an

10

20

25

40

45

50

55

60

65

2

embodiment in which link-pad pad generators 515 pause
when not in use (e.g., AND gates 820 and signals PADen are
included).

FIG. 11 depicts a memory system 1100 that secures read
and write data while accommodating memories of different
data widths.

FIG. 12 depicts another embodiment of a memory system
1200 that secures read and write data while accommodating
memories of different data widths.

FIG. 13 depicts a variable-width cryptography circuit
1300 that may be used for security circuits 1210[15:0] in
controller 1205 and memories 1215[7:0] of FIG. 12.

FIG. 14 details aspects of an embodiment of cryptography
circuit 1300 of FIG. 13, which particular attention paid to the
workings of an embodiment of variable-width multiplexer
1313.

FIG. 15 is a plan view of a memory die 1500 that includes
integrated security circuitry 1505 in accordance with one
embodiment.

FIG. 16 schematically depicts security circuitry 1600 that
can be used as security circuitry 1505 of FIG. 15.

FIG. 17 depicts a non-linear pad-value generator 1700 in
accordance with another embodiment.

FIG. 18 illustrates how a security circuit 1800 similar to
pad-value generator 1700 of FIG. 17 can be physically
instantiated as a stripe 1805 within a physical interface 1810
in the manner outlined previously in connection with FIG.
15.

FIG. 19 depicts a memory die 1900 in accordance with an
embodiment that supports a multi-modal security circuit.

FIG. 20 includes cut-away views of a through-silicon-via
(TSV) package 2000 and a package-on-package (POP)
2005, both of which are memories that include cryptography
circuitry of the type detailed previously.

FIG. 21 depicts a memory module 2100 in accordance
with another embodiment.

DETAILED DESCRIPTION

FIG. 1 is a computer system 100 that protects data and
instructions shared between a memory controller 105 and a
memory 110 via a memory link 115 using separate stream
ciphers (or cyphers) for write and read channels. Memory
controller 105 is instantiated on an integrated-circuit (IC)
device that can include a processing unit, such as a central
processing unit (CPU), or can support a separate CPU (not
shown). Controller 105 includes a write-data encryptor 120
to encrypt write data 125 from the processor and commu-
nicate the resultant encrypted write data 130 to memory 110.
Controller 105 additionally includes a read-data decryptor
135 to decrypt encrypted data 140 from memory 110, and
thus recover decrypted read data 145. The encrypted infor-
mation passing between controller 105 and memory 110 is
referred to as write and read “data” in this example, but
commonly includes, e.g., instructions and memory
addresses too. Link 115 is shown as two unidirectional
signal paths, but can be bidirectional in other embodiments.

Write-data encryptor 120 includes a link-pad generator
150 that generates a sequence of pad values from an initial-
ization key stored in a link-key register 155. Generator 150
advances to a next pad value based on some signal that
changes with time, and can be monitored on both controller
105 and memory 110. Suitable signals include one or a
combination of a common clock, addresses specified for
memory accesses, and process identifiers that are unique to
each process that makes a memory request. Changing the
pad value at regular or irregular intervals (e.g., every

US 9,465,961 B2

3

memory transaction or for different processes) increases the
difficulty of breaking the cipher because repeated accesses to
the same memory address are encrypted using different pad
values. In this example each unit of write data 125 (256 bits
in this example) is combined with a corresponding pad value
using a non-diffusive function to produce encrypted data
130. The non-diffusive function is an exclusive OR in this
case, which can be performed using relatively power- and
area-efficient circuitry.

Read-data decryptor 135 includes a link-pad generator
160 that generates a sequence of pad values from an initial-
ization key stored in a link-key register 165. The initializa-
tion key and sequence of pad values are the same as
employed by encryptor 120 in this embodiment, but this
need not be so. As detailed below, decryptor 145 and
encryptor 120 can use many of the same resources for area
and power efficiency.

Memory 110 includes a write-data decryptor 170 to
decrypt write data 130 for storage in a memory core 175.
The stored data is identical to data 125, the pre-encryption
information in controller 105. Memory 110 also includes a
read-data encryptor 180 to secure read data from memory
core 175, producing encrypted data 140. Decryptor 170 and
encryptor 180 are the same or similar to decyptor 135 and
encryptor 120, so a detailed discussion is omitted.

The two encryptor/decryptor pairs 120/170 and 180/135
support separately protected write and read channels. This
separation allows controller 105 to encrypt a unit of write
data directed to a specified address 185, here depicted as a
row of memory locations, using a different pad value than is
later used to read the same unit from the specified address.
The time lapse between a write to any given address and the
subsequent read or reads of that information varies depend-
ing upon the needs of the controller. Separating the write and
read protection into separately timed, secure channels allows
the encryption/decryption processes to update pad values
with time without the overhead that would otherwise be
required to synchronize the security processes used to write
and read to each address.

Read-data decryptor 135 includes a link-pad generator
160 that generates a sequence of pad values from an initial-
ization key stored in a link-key register 165. The initializa-
tion key and sequence of pad values are the same as
employed by encryptor 120 in this embodiment. As detailed
below, decryptor 135 and encryptor 120 can use many of the
same resources for area and power efficiency.

In cryptography, write data 125 and encrypted write data
130 are “plaintext” and “ciphertext,” respectively. Encryp-
tors 120 and 180 perform stream ciphers, in which the bits
of each 256-bit unit of write data 125 are combined with a
256-bit binary number referred to herein as a pad value.
Each link pad generator issues pad values as a deterministic,
pseudorandom sequence, the initial value of which is deter-
mined by a “seed” value in key register 155.

Encryptor 120 on controller 105 and decryptor 170 on
memory 110 share the same seed value and thereafter remain
in lock-step for generating each successive pad value. The
same is true of encryptor 180 and decryptor 135, though the
seed value may be different for the read pair than for the
write pair. Key sharing between controller 105 and memory
110 is accomplished securely using conventional circuits
and techniques that are well known to those of skill in the
art. Some embodiments facilitate secure key sharing using
circuits especially adapted for use in memory systems, as
detailed in connection with later examples.

FIG. 2 is a flowchart 200 outlining the operation of an
embodiment of memory system 100 of FIG. 1. To begin

10

20

25

30

35

40

45

50

55

60

65

4

with, at step 205, the seed value for the two encryptor/
decryptor pairs 120/170 and 180/135 are loaded into the
link-key registers (e.g., 155 and 165). The seed values are
the same for both ends of the write channel, and for both
ends of the read channel, and may be the same for both write
and read channels. In some embodiments memory 110
includes non-volatile memory that stores private and public
keys that allow memory controller 105 to encrypt a seed
value, using the public key, and pass the resulting value to
memory 110. Cryptographic circuitry on memory 110,
examples of which are detailed below, use the stored private
key and the encrypted seed value to recover each seed value
and store it in the appropriate link-key register. The shared
seed values synchronize the link-pad generators on either
side of memory link 115.

With the link-pad generators synchronized, memory con-
troller 105 can issue encrypted memory requests to memory
110. Assuming memory controller 105 receives a write
request from a CPU, for example, memory controller 105
prepares a write request that includes the requisite memory
address and a 256-bit unit of write data 125 (210). Encryptor
120 encrypts the unit of write data 125 using a first pad value
from the link-pad generator 150 (215), and controller 105
transmits the request with the encrypted write data to
memory 110 (220).

Decryptor 170 was initially seeded with the same key as
encryptor 120, and sequences through the same sequence of
pad values. Decryptor 170 therefore has access to the first
pad value employed by encryptor 120 in step 215, and uses
the first pad value to decrypt the incoming unit of data (225).
Memory 110 writes the resultant plaintext into a memory
core 175 at the specified address (230). The plaintext is
thereafter available in memory core 175 until it is erased or
overwritten.

Memory controller 105 reads the plain text from memory
core 175 by first issuing a read request to the appropriate
memory address (235). Memory 110 responds by reading
the plaintext from core 175 and providing it to encryptor 180
(240). The read transaction takes place after the write
transaction, and so the time signal TIME will have advanced
all the link pad generators since the information was initially
stored at the designated address in core 175. As a result, the
unit of data read from the specified address will be encrypted
using a second pad value different from the first (245).
Memory 110 thus transmits the data to controller 105 (250)
as different ciphertext than was conveyed to the memory 110
to store the same unit of data. Finally, decryptor 135
decrypts the ciphertext to recover a unit of data 145 (255).

FIG. 3 depicts a memory system 300 that includes
memory 110 of FIG. 1 and a memory controller 305 in
accordance with another embodiment. System 300 is similar
to system 100 of FIG. 1, with like-identified elements being
the same or similar. System 300 offers additional data
security, however, by encrypting write data 125 before
applying the stream cipher used to secure the write channel.
In essence, write data 125 is encrypted twice so that the
information decrypted by write-data decryptor 170 is stored
as ciphertext.

Memory controller 305 includes an encryptor 310 and
error-correction circuit (ECC) encoder 315 that precede
write-data encryptor 120. Encryptor 310 performs diffusive
encryption on write data 125 in this example, and is seeded
by the address Addr and process identifier PID associated
with each specified write request. The resultant pre-en-
crypted units of write data are feed through ECC 315 to
encryptor 120 for a second encryption. The twice-encrypted,
error-correction coded unit of write data is then conveyed to

US 9,465,961 B2

5

memory 110. Decryptor 170 unwraps the channel encryption
of encryptor 120 and conveys the resultant diffusively
encrypted and error-correction coded ciphertext to core 175
as detailed above in connection with FIGS. 1 and 2. For a
read transaction, encryptor 180 encrypts the ciphertext from
a selected address and conveys the resultant twice-encrypted
read data 325 to controller 305. Decryptor 135 unwraps the
channel encryption of encryptor 180, ECC decoder 330
corrects any error, and a diffusive decryptor 335 recovers
plaintext read data 145 from the error-corrected data.

The diffusive encryption provided by encryptor 310 and
reversed by decryptor 335 can be a block cipher, an example
of which is the Advanced Encryption Standard (AES). AES
is widely known, and circuits for implementing AES are
well known to those of skill in the art. A detailed description
of the workings of encryptor 310 is therefore omitted. The
error-correction circuitry of ECC 315 and 330 corrects for a
single bit error and detects a double bit error in this embodi-
ment. ECC 315 applies correction encoding between the
diffusive and non-diffusive encryptions, and ECC 330
applies correction decoding between the non-diffusive and
diffusive decryptions. Error-correction codes and circuits for
enabling them are also well known.

FIG. 4A depicts a memory system 400 in accordance with
yet another embodiment. System 400 is similar to systems
100 and 300, with like-identified elements being the same or
similar. System 400 affords still greater security, however,
by encrypting write and read addresses along with the
associated data.

The path for securing write addresses extends from con-
troller 405 to memory 410. On the controller side, a first
write-address encryptor 415 encrypts each write address 420
associated with a write transaction, a parity circuit 423 sets
a parity bit based on the encrypted write address, and a
second write-address encryptor 425 encrypts the address
once again, along with the parity bit, for transmission to
memory 410. On the memory side, a write-address decryptor
430 decrypts the incoming twice-encrypted address, a parity
check circuit 435 checks the parity bit and parity of the
received command for errors, and an AND gate 440 to
memory core 175 either admits or blocks write access
depending upon whether check circuit 435 asserts an error
signal ERRw. In the event an error is detected, signal ERRw
induces a retry-circuit 445 to issue a retry signal to corre-
sponding circuitry 447 on controller 405 to induce controller
405 to attempt try the write transaction again. In this
example the retry circuits 445 and 447 save valuable
resources by communicating via data-mask (DM) pins and
lines that are also used to communicate mask signals from
the controller to the memory.

Address encryptor 415 includes row- and column-swap
circuitry that produce deterministic sequences of 32b pad
values to XOR with the incoming addresses. Parity circuit
423 adds a parity bit to each encrypted address and sends the
resultant bits to encryptor 425. Encryptor 425 encrypts those
bits again and conveys the twice-encrypted address infor-
mation to memory 410. Decryptor 430 decrypts the
encrypted write address and parity-check circuit 435 checks
for parity errors as noted above. The encryption applied by
encryptor 415 remains in the address provided to core 175,
but does not interfere with subsequent reads because the
respective read addresses are treated to the same encryption.
Encryptor 425 and decryptor 430 receive fewer bits than
encryptor 120 and decryptor 170 in this example, but can be
implemented using similar circuits.

The path for securing read addresses is functionally
similar to the write-address path. A first read-address encryp-

10

15

20

25

30

35

40

45

50

55

60

65

6

tor 450 encrypts each address 455 associated with a read
transaction, a parity circuit 460 sets a parity bit based on the
encrypted read address, and a second read-address encryptor
465 encrypts the address once again, along with the parity
bit, for transmission to memory 410. A read-address decryp-
tor 470 decrypts the incoming twice-encrypted address, and
a parity check circuit 475 checks the parity bit for errors. In
the event an error is detected, an error signal ERRr induces
retry-circuit 445 to issue a retry signal to controller 405.
Each memory address is conveyed as part of a memory
command (e.g., a write command or a read command) in
these examples, so encryptors 415 and 450 may also be
referred to as “command encryptors.” Bits other than
address bits may also be encrypted in other embodiments.

Diffuse encryptor 310 and decryptor 335 are both seeded
with the same initial key CKEY. Link keys LKEY,, LKEY |,
LKEY,, and LKEY; each serve a corresponding pair of
security circuits on either side of system 400. Fewer keys
can be used for read and write addresses and data. For
example, a single 256-bit key can be used for read and write
data, and a 32-bit subset of that data key can be used for
addresses.

FIG. 4B depicts an address encryptor 490 that can be used
for e.g. encryptors 415 and 450 of FIG. 4A. Encryptor 490
encrypts a write address 420 by swapping selected rank,
bank, row, and column bits. In this example, this swapping
is accomplished by exchanging the bit positions of pairs of
bits in one or more fields Rank-F, Bank-F, Row-F, and
Column-F. Further, a static offset value may be exclusive-
ored (XORed) with the swapped address bits. Both the swap
and offset operations can be revered an arbitrary time after
the encryption. Masks CA-maskH-SWAP and CA-maskH-
OFF can be applied to exclude certain address bits from the
swap and offset operations.

Encryptor 490 includes mask-swap logic 491, mask-offset
logic 492, swap logic 493 for each address field, and a series
of XOR gate 494. Mask-swap logic 491 performs an AND
function of each mask bit with a corresponding bit of a key
CA-keyH-SWAP to produce control signals COLswap,
ROWswap, BANKswap, and RANKswap. Assuming a cor-
responding asserted mask bit, each logic-one key bit asserts
a swap bit that swaps a bit pair within one set of swap logic
493. The key CA-keyH-SWAP can be fixed or time variant,
but in the latter case is selected from a value that can be
replicated when the same address is later read. The key can
be a function of the process ID (PID) for the process
requesting the read operation, for example.

Mask-offset logic 492 receives its own mask CA-maskH-
OFF and key CA-keyH-OFF, and performs an AND function
of each mask bit with a corresponding bit of its key to
produce control signals COLoftset, ROWoftset, BANKoff-
set, and RANKoffset. Assuming a corresponding asserted
mask bit, each logic-one key bit asserts an offset bit that
causes an XOR gate to invert the corresponding output from
swap logic 493. The key CA-keyH-OFF can be fixed or time
variant. FIG. 5 depicts a memory system 500 in accordance
with an embodiment in which shared security resources are
used to encrypt write data and write addresses at a controller
505, and to decrypt the encrypted write data and addresses
at a memory 510. On the controller, the security resources
include an 84-bit link-pad generator 515, a link-pad register
520, a 64-bit XOR gate 525, and a 20-bit XOR gate 530. A
4:1 data buffer and serializer 535 produces 64-bit write data
Wdata-64 from 256-bit write data Wdata-256 from e.g. a
processor, and a 4:1 address buffer and serializer 540 pro-
duces 20-bit addresses Waddr-20 from 80-bit addresses
Waddr-80. XOR gate 525 combines write data Wdata-64

US 9,465,961 B2

7

with a 64-bit pad value LPADW-64 from register 520, and
the resultant encrypted write data is presented to a 2:1
serializer 545 so that controller 505 conveys encrypted
32-bit data DQ-32 to memory 510. Write addresses Waddr-
80 are similarly encrypted and serialized using serializer
540, XOR gate 530, and a second 2:1 serializer 550 to
produce ten-bit command signals CA-10 to memory 510.

The write data and addresses are encrypted using subsets
of bits from the same link-pad generator 515. As detailed
below, this sameness means the bits from one subset of the
pad-key value are used in calculating subsequent bits of the
other subset. An 84-bit pad generator can be made to repeat
far less frequently than a 64- or 20-bit generator, so the
resultant encryption appears more random in this embodi-
ment than in ones in which the data and addresses are
encrypted using separate and relatively shorter pad-value
generators.

Memory 510 decrypts the incoming data and addresses
using security circuitry similar to that used for encryption. A
link-pad generator 555 and register 560 provide 84-bit link
pad values. Generator 555 is seeded with an initial key
LKEYw identical to that of the corresponding generator 515
on the controller, and steps through the same sequence of
84-bit pad values. For decryption, 64 bits of each pad value
are XORed with the output of a data serializer 565, and 20
bits are XORed with the output of an address deserializer
575. A 1:4 deserializer 570 converts the incoming decrypted
data back to the original 256-bit number and conveys it to
memory core 175. The decrypted address is also deserialized
in this embodiment, by a 1:4 deserializer 580, with the
resultant 80-bit address presented to core 175 to specify the
storage location of the incoming data. The stored data is
plaintext in the example, but can be ciphertext in other
embodiments (see e.g., the example of FIG. 3).

FIG. 6 depicts a memory system 600 in accordance with
an embodiment in which shared security resources are used
to secure read data and read addresses shared between a
controller 605 and a memory 610. System 600 is similar to
systems detailed above, with like-identified elements being
the same or similar.

On the controller, the security resources include an 84-bit
link-pad generator 515, a link-pad register 520, a 64-bit
XOR gate 525, and a 20-bit XOR gate 530. An address
buffer and serializer 615 serializes 80-bit addresses Raddr-
80 to 20-bit addresses Raddr-20, which XOR gate 530
combines with twenty bits from register 520. A serializer
550 serializes the resultant 20-bit encrypted addresses to
convey encrypted 10-bit addresses CA-10 to memory 610.
Memory 610 employs an XOR gate and a pair of deserial-
izers 575 and 580, as detailed in connection with FIG. 5, to
present decrypted 80-bit addresses to memory core 175.

For read accesses, memory core 175 presents the
addressed data as 256 bits to a serializer 620, which converts
the read data to 64-bit data Rdata-64 conveyed at four times
the data rate from core 175. An XOR gate 625 combines data
Rdata-64 with 64 bits from pad register 560 and conveys the
resultant encrypted data to a serializer 545. Encrypted 32-bit
read data DQ-32 is then communicated to controller 605 at
eight times the data rate from the core.

The encrypted 32-bit data DQ-32 is synchronized with the
controller time domain and deserialized to 64 bits by
domain-crossing circuit/deserializer 630. XOR gate 525
combines the resultant 64-bit encrypted data with 64 bits
from pad register 520 to decrypt that read data, thus pro-
ducing plaintext read data Rdata-64. Finally, a buffer/dese-
rializer 635 converts the plaintext to 256-bit read data
Rdata-256.

10

15

20

25

30

35

40

45

50

55

60

65

8

Link pad generators 515 and 555 are initialized using the
same link key LKEY,, and sequence through the same
deterministic sequence of pad values. This initialization is
performed when the system is powered-up, both in control-
ler 505 and memory 510, as indicated by the common signal
“initialize.” Generators 515 and 555 only increment when
read or write operations are being performed in this
example, so the initialization can be done with a simple
control pin or control register operation with no real timing
constraints between the controller and the memory. Address
encryption at controller 505 takes place before decryption.
Generator 555 is delayed relative to generator 515 during the
initialization process so that the same pad values are used to
encrypt and decrypt each unit of information. Initialization
methods and circuits for synchronizing pad-value generation
on either side of a communication channel are well known,
so a detailed discussion is omitted.

Read-data encryption at memory 610 takes place before
decryption at controller 605, so the link pad values
employed for read-data decryption are likewise delayed. In
the instant example, a pipeline register 640 in controller 605
delays application of link-pad values LPADR-64 to the
incoming encrypted read data. In other embodiments the
encrypted read data is buffered at the memory or controller
rather than or in addition to the link-pad values to impose the
requisite delay.

FIG. 7 is a waveform diagram illustrating the read timing
for an embodiment of system 600 of FIG. 6. Link-pad
generators 515 and 555 are assumed to have been initialized
using the same key, with generator 515 advanced by six
clock cycles to accommodate the delay between address
encryption at controller 605 and decryption at memory 610.
This offset can be fixed if the timing of system 600 is well
defined, or can be configurable to accommodate variables in
the signaling environment, such as to allow for communi-
cation channels of different lengths.

The example of FIG. 7 assumes a read access begins at
time zero, at which time controller 605 presents an 80-bit
address Raddr-80 to deserializer 615. Deserializer 615
breaks the 80-bit address into four sequential 20-bit address
fields that specify alternating sets of row and column (R and
C) address bits. Link pad values four to seven (4-7) are
applied to respective 20-bit address fields, and the resultant
encrypted addressing information is again serialized, this
time to create a sequence of eight 10-bit address fields
labeled CA-10.

The 10-bit address fields are communicated to deserializer
575 on memory 610 after some channel delay, and are
serialized to recover the 20-bit row and column address
fields R and C. Due to the offset imposed on generator 515
during initialization, pad values 4-7 used to encrypt the
address fields are available from register 560 at the correct
timing for recovering the address information. Read address
Raddr-80 is therefore recovered at time T3 on memory 610.

Memory core 175 delivers 256 bits of data responsive to
read address Raddr-80, at time T4 in this example. Serializer
620 converts the read data to successive 64-bit subsets
Rdata-64 that begin at time T5 and are encrypted using pad
values sixteen through nineteen (16-19). Serializer 545 then
serializes encrypted read data Rdata-64 to produce 32-bit
data DQ-32 for conveyance to controller 605.

In this example encrypted data DQ-32 arrives at the
controller side at time T6. Deserializer 630 halves the data
rate and produces four consecutive fields of encrypted 64-bit
data Rdata-64 synchronized with pad values twenty-eight
through thirty-one (28-31). Recalling that the data was
encrypted at memory 610 using pad values sixteen through

US 9,465,961 B2

9

nineteen, the waveform diagram shows that pad generator
515 has advanced twelve pad values past the requisite
sequence for decrypting data Rdata-64. Pipeline 640 is
configured to retard application of pad values to XOR gate
525 by twelve values to establish the correct timing align-
ment. Other circuit configurations can be used to produce the
correct timing alignment between read data and pad values
in other embodiments. For example, one or more pad buffers
on memory 610 can be used to retard address pad values
relative to data pad values.

FIG. 8 depicts a memory system 800 in accordance with
an embodiment in which shared security resources are used
to secure both write and read data shared between a con-
troller 805 and a memory 810. System 800 is similar to the
systems detailed previously in connection with FIGS. 5-7,
with like-identified elements being the same or similar.
Controller 805 includes a pad-value pipeline 815 that intro-
duces a delay in the pad values applied to read data relative
to those applied to write data. This delay allows the shared
security resources to support rapid read/write turn-around
times without reusing pad values. The reuse of pad values
for read/write turn-arounds would create security vulner-
abilities, and is therefore undesirable.

The data encrypted and decrypted by controller 805 and
memory 810 is 64 bits, and is encrypted using 64-bit pad
values. Pad-value generators 515 and register 520 generate
84-bit values, twenty of which may be used to secure
addresses. Even if the extra bits are not used to encrypt or
decrypt information, they increase the repeat interval of the
pad-value generators, and thus the evident randomness and
concomitant security of the pad values.

Support for rapid read/write turn arounds is beneficial for
memory performance. Very rapid read/write turn arounds
may not afford sufficient time for the shared security
resources to advance the pad values, however, and may
therefore require reuse of pad values for successive memory
transactions. While such embodiments do afford some secu-
rity, particularly in comparison to systems that communicate
plaintext, attacks that employ read/write turn arounds can be
used to glean information about how information is secured,
and thus to breach security. Pipeline 815 delays application
of key pads to incoming read data to support rapid turn
arounds without the undesirable reuse of pad values.

Advancing pad-value generators consumes more power
than maintaining their current state, so some embodiments
only advance the generators when new pad values are
needed. To this end, both controller 805 and memory 810
each include an AND gates 820 that receives a pad-enable
signal PADen to gate a clock signal Clk that advances link
pad generators 515.

FIG. 9 is a waveform diagram 900 illustrating the opera-
tion of memory system 800 in accordance with an embodi-
ment in which link-pad generators 515 advance on each
clock cycle (e.g., AND gates 820 and signals PADen are
omitted). Diagram 900 shows back-to-back read and write
operations closely spaced in time to take full advantage of
the bandwidth provided by the channel between controller
805 and memory 810. The following discussion assumes
that pad generators 515 produce identical pad-value streams,
and are initialized to produce a timing offset—about six
cycles of signal CIk in this example—to accommodate the
time delay between write-data encryption at controller 805
and write-data decryption at memory 810.

Beginning with a 256-bit unit of read data Rdata-256 at
the far left, memory 810 serializes this information to create
four 64-bit subsets Rdata-64, each of which is encrypted
using a respective one of pad values zero to three (0-3). The

10

15

20

25

30

35

40

45

50

55

60

65

10

resultant ciphertext is serialized once more to create a
sequence of eight 32-bit values, which are conveyed to
controller 805 via data channel DQ-32.

The data channel imposed about two clock cycles of delay
in this example, but the delay need not be increments of a
clock period. Controller 805 deserializes the ciphertext to
the four 64-bit subsets Rdata-64 and decrypts each one using
a respective pad value LPADRWAdly. The applied pad values
are delayed by a delay Dly relative to the pad values
LPADRW-64 from the resident pad generator 515 so that the
decryption pad values match the encryption pad values
applied to the same data. Controller 805 thus recovers the
256-bit data Rdata-256 first read from memory core 175.

For an optimum read/write turn-around time, controller
805 conveys write data to memory 810 on channel DQ-32
immediately after arrival of the read data. To accomplish
this, four 64-bit subsets Wdata-64 serialized from a 256-bit
unit of write data are encrypted while read data Rdata-64 is
decrypted. Rather than using the same pad values, the delay
Dly between pad values LPADRW and LPADRWdly allows
the encryption of write data and the decryption of read data
to occur simultaneously with different pad values twelve to
fifteen (12-15). The encrypted write data is conveyed to
memory 810 and deserialized to create write data Wdata-64,
each subset of which is timed to the correct one of pad values
twelve to fifteen generated at memory 810. The decryption
thus produces the write data Wdata-256 initially source by
controller 805.

FIG. 10 is a waveform diagram 1000 illustrating the
operation of memory system 800 in accordance with an
embodiment in which link-pad generators 515 pause when
not in use (e.g., AND gates 820 and signals PADen are
included). Diagram 1000 shows back-to-back read and write
operations closely spaced in time to take full advantage of
the bandwidth provided by the channel between controller
805 and memory 810. AND gates 820 each receive a
pad-enable signal PADen that allows their respective pad-
value generators to advance when new pad values are
required. Signal PADen can be driven by memory com-
mands that are shared between controller 805 and memory
810, and is derived from column-access commands in one
embodiment.

Pipeline 815 induces a pad-key offset on the controller in
this example, but other circuits can be used at the controller
or memory in other embodiments to support short read/write
turn-around times without pad-value reuse. In another
embodiment, for example, read buffer and deserializer 635
can be modified to include pipeline 815, or to otherwise
produce the requisite alignment of pad values and read data.

FIG. 11 depicts a memory system 1100 that secures read
and write data while accommodating memories of different
data widths. A memory controller 1105 can be configured to
communicate with nine memories of width eight or eighteen
memories of width four. The memories can be of fixed data
widths, but the example of FIG. 11 includes nine width-
configurable memories 1110. In some examples the width
configurability can be used, e.g., to implement Dynamic
Point-to-Point (DPP) signal interfaces. DPP interfaces com-
bine the performance benefits of point-to-point signaling
with the flexibility of multi-drop topologies.

Controller 1105 can function as detailed previously, so a
detailed treatment is omitted. Briefly, an error-correction
encoder 1125 encodes 64 bits of write data WData and
passes the resultant 72-bit encoded data to an XOR gate
1130, which combines the encoded data with 72-bit pad
values Pad[71:0] from a pad generator 1135 to send
encrypted data DQ[71:0] to memories 1110; a pad generator

US 9,465,961 B2

11

1140, XOR gate 1145, and error-correction decoder 1150
work similarly to recover read data RData from encrypted
data DQ[71:0] read from memories 1110.

Each memory 1110 has a data width of eight, and is
connected to controller 1105 via a respective eight-bit subset
of the 72 links DQ[71:0] to controller 1105. The detailed
memory labeled “Memory [1],” for example, is connected to
data links DQ[15:8], and thus communicates eight of sev-
enty-two data bits for each memory transaction. To support
secure write transactions, memory 1110 includes a 72-bit
pad generator 1135 that issues the same pad-value sequence
as generator 1135, but offset in time to accommodate the
delay between encryption and decryption. A multiplexer
1155 selects eight bits Pad[15:8] from pad generator 1135
that are bit aligned with the incoming data DQ[15:8]. A
register 1160 is initialized to specify the correct subset of
pad bits, and also controls a demultiplexer 1165 to convert
whatever data width is presented to core 1170 to thirty-two
bits. In the read direction, a multiplexer 1175 converts the
thirty-two bit data from core 1170 to eight-bit data, and an
XOR gate combines this data with eight bits Pad[15:8] from
a seventy-two bit pad value from a generator 1185. Multi-
plexer 1175 and the subset of pad values Pad[15:8]
employed for this encryption is determined by the contents
of register 1160.

Each register 1160 is set during system initialization so
that its stored value reflects a specific subset of data links
DQJ71:0]. In the depicted configuration, each of memories
1110 is a memory module or integrated-circuit (IC) die that
communicates eight-bit data via a respective eight-bit subset
of links DQ[71:0]. System 1100 is easily configured to
accommodate more or fewer memories. To double the
available memory resources, for example, system 1100 can
be configured to include eighteen memories 1110, each
configured to communicate four-bit data via a respective one
of sixteen subsets of links DQ[71:0]. With reference to
memory Memory[1], assume for example that the memory
is connected to data links DQ[15:12] to communicate four
bits rather than eight. To achieve this relatively narrow
configuration, register 1160 may be programmed such that
multiplexers 1155 and 1180 select pad bits Pad[15:12], and
demultiplexer 1165 and multiplexer 1175 perform the req-
uisite conversions between four and thirty-two bits. This
configuration on the memory side need not affect controller
1105.

The error-correction circuitry of system 1100 extends the
write and read data from sixty-four bits to seventy two.
Similar embodiments without error correction, and the con-
comitant data-width increase, provide the same amount of
storage using e.g. eight eight-bit memories or sixteen four-
bit memories serving a sixty-four bit data channel.

FIG. 12 depicts another embodiment of a memory system
1200 that secures read and write data while accommodating
memories of different data widths. This embodiment
includes a memory controller 1205 with sixteen variable-
width security circuits 1210[15:0] for communicating with
up to sixteen memories 1215. In particular, system 1200 can
be configured to communicate with two thirty-two-bit
memories, four sixteen-bit memories, eight eight-bit memo-
ries, or sixteen four-bit memories. The memories can be of
fixed data widths, but this embodiment is shown to include
width-configurable memories 1215. Encryption and decryp-
tion circuitry is only depicted for the write direction: read
circuitry is essentially the same.

Controller 1205 conveys error-corrected write data
Wdata-64 to a configurable interconnect 1220 that distrib-
utes the write data to security circuits 1210 based on the

20

25

40

45

55

12

contents of a programming register 1225. Depending upon
the width setting, interconnect 1220 can direct four bits to
each of sixteen security circuits 1212, eight bits each to half
of security circuits 1212, or sixteen bits each of four of
security circuits 1212. The contents of register 1225 also
configures a second configurable interconnect 1230 to make
the same width selections at the outputs of security circuits
1210. In the depicted example controller 1205 is configured
such that eight security circuits 1210[7:0] are each config-
ured to receive and deliver eight-bits of write data to
respective memories 1215[7:0] on respective data channels,
and each memory device is configured to support a data
width of eight bits. The eight remaining security circuits
1210[15:8] on controller 1205 are disabled to save power,
but are available for configurations that support more
memory channels. Data busses that support variable data
widths are labeled “4/8/16/32,” with the “8” underlined to
indicate the depicted configuration.

Each memory 1215 has a security circuit 1210 that is
width configured and synchronized to communicate with a
corresponding security circuit 1210 on controller 1205. In
this configuration, for example, security circuits 1210[0] and
1210[7] of controller 1205 are synchronized with security
circuits 1210 of memories 1215[0] and 1215[7], respec-
tively. A register in each memory, similar to register 1160 of
FIG. 11, is initialized to set the widths of security circuits
1210 and the serialization/deserialization of the demulti-
plexer and multiplexer within core 1170.

FIG. 13 depicts a variable-width cryptography circuit
1300 that may be used for security circuits 1210[15:0] in
controller 1205 and memories 1215[7:0] of FIG. 12. Circuit
1300 supports data widths of four, eight, sixteen, and thirty-
two bits. Settings for these width configurations are sum-
marized in a table 1305.

Cryptography circuit 1300 includes pad-generation cir-
cuitry 1310, an adjustable multiplexer 1313, a clock divider
1315, a counter 1320, and a width-selection register 1325
that collectively form a link-pad generator to issue a
sequence of pad values LPAD. Depending upon the con-
figuration, the pad-value width can be four, eight, sixteen, or
thirty-two bits. Cryptography circuit 1300 additionally
includes a cipher circuit 1330, an XOR gate in this example,
connected to input port In[4/8/16/32] and to the output from
the link-pad generator to combine incoming text (e.g. plain-
text data or pre-encrypted data) with pad values LPAD to
produce ciphertext. Width-selection register 1325 is loaded
via a width-selection port W to configure the width of circuit
1300. Register 1325 is part of cryptography circuit 1300, but
can be external with its contents shared among multiple
cryptography circuits in the manner of register 1225 in FIG.
12.

With reference to table 1305, circuit 1300 can be config-
ured to support four, eight, sixteen, or thirty-two communi-
cation links. In the example of FIG. 12, this configurability
supports data widths W of the same four values. In the
second column, the value N refers to the number of memo-
ries in a memory system that communicates over 64 data
links. N is sixteen, for example, if each of the memories is
configured to have a width of four. The next column,
width-select WSel, corresponds to the input to multiplexer
1313 that determines the width of its output to cipher circuit
1330. The final column, count signal Cnt, lists the extent to
which clock signal Clk is divided down to advance pad-
generation circuit 1310.

The following discussion describes the operation of cir-
cuit 1300 should register 1325 store a value indicative of a
thirty-two-bit data width, which is represented by the last

US 9,465,961 B2

13

row of table 1305. The value N is set to two so that
pad-generation circuit 1310 advances every second period of
clock signal Clk. Width-select signal WSel causes multi-
plexer 1313 to issue subsets of thirty-two bits, and count
signal Cnt causes counter 1320 to advance by eight counts
for each clock cycle. Each count selects a neighboring four
bits on the input, so advancing by eight counts selects the
next thirty-two bits. The link-pad generator thus derives
successive, relatively narrow pad values LPAD from a
sequence of relatively wider pad values from pad generation
circuitry 1310.

Circuit 1300 saves power when configured for relatively
narrow widths by reducing the frequency with which pad-
generation circuit 1310 is advanced to a new pad value. With
reference to the four-bit configuration of the top row of table
1305, the value N is set to sixteen so that pad-generation
circuit 1310 advances every sixteenth period of clock signal
Clk. Pad-generation circuit 1310 thus produces one eighth
the pad bits as the thirty-two-bit configuration. Width-select
signal WSel causes multiplexer 1313 to issue subsets of four
bits, and count signal Cnt causes counter 1320 to advance by
one count for each clock cycle to select the next four bits.

FIG. 14 details aspects of an embodiment of cryptography
circuit 1300 of FIG. 13, which particular attention paid to the
workings of an embodiment of variable-width multiplexer
1313. Multiplexer 1313 includes four 2:1, fixed-width mul-
tiplexers 1400, 1405, 1410, and 1415, a 4:1 fixed-width
multiplexer 1420, a four-bit register 1425, and an adder
1430. Multiplexer 1313 responds to the input signals
detailed in connection with FIG. 13 to provide the width
configurations of table 1305.

FIG. 15 is a plan view of a memory die 1500 that includes
integrated security circuitry 1505 in accordance with one
embodiment. Security circuitry 1505 is laid out and its
interconnections routed in an area-efficient, and therefore
cost-effective, manner. Also advantageous, security circuitry
1505 supports two operational modes, a first mode in which
it uses integrated combinational and sequential logic to
derive an initial pad value using a shared-key algorithm, and
a second mode in which it repurposes some of that logic to
generate a sequence of pad values. Some embodiments use
available memory resources to assist in key generation.

Memory die 1500 includes a command interface 1510 and
a data interface 1515 to facilitate access to one or more
memory banks 1520. Security circuitry 1505 occupies a
stripe arranged along column input/output circuitry (not
shown) within interface 1515. This arrangement affords
circuitry 1505 access to columns of data for encryption and
decryption. A similar stripe of security circuitry can be
provided for and within command interface 1510, but is
omitted in this example.

Security circuitry 1505 comprises a number of slices
1525, one for each data column for example. Each slice 1525
includes a number of sequential storage elements—desig-
nated with clock terminals—and full adder FADD, the
purposes of which are detailed in connection with later
figures. Slices 1525 are interconnected to form pad-sequenc-
ing logic to perform various security operations. DRAM
dies have relatively few metal layers, so security circuitry
1505 is optimized to require few wires 1540.

FIG. 16 schematically depicts security circuitry 1600 that
can be used as security circuitry 1505 of FIG. 15. Security
circuitry 1600 includes two linear-feedback shift registers
(LFSRs) 1605 and 1610, the outputs from which are com-
bined by some non-linear masking function represented by
a block 1615. LFSRs are deterministic, in the sense that
when clocked repeatedly they step through a predictable

25

35

40

45

55

60

14

sequence of states. Consequently, an LFSR that starts with
a known key value will contain a predictable pad value after
a given number of clock periods. LFSRs can be reverse
engineered given a fragment of the sequence they generate.
The inclusion of the non-linear function of block 1615
makes this considerably more difficult. Examples of suitable
non-linear functions and supporting circuits are detailed
below.

LFSR 1605 is a parallel, 93-tap implementation that
cycles through 2°3" values before repeating. LFSR 1610,
also parallel, is a 127-tap implementation that cycles
through 2'27-! values. In comparison with more common
serial LFSR implementations, parallel LFSRs require a
smaller number of taps for a given bit length. Further,
parallel implementations advance a fixed number of serial
cycles for each parallel cycle, which greatly reduces the
similarity of temporally adjacent pad values and thus
increases the difficulty of reverse engineering the LFSR
logic. Block 1615 combines ninety bits from each of LFSRs
1605 and 1610 using a non-linear function to produce
ninety-bit pad values PAD[2:91]. All or a subset of these bits
can be used to encrypt or decrypt information as detailed in
connection with earlier figures.

A circuit 1625[] at the lower left of FIG. 16 illustrates one
of ninety slices 1625 [91:2] of masking function 1615 in
accordance with one embodiment. Slice 1625[{] includes a
full adder FADD and a register C to store a carry bit. Each
slice combines a bit from LFSR 1605 with one from LFSR
1610 to produce one bit PADJi] of pad value PAD[2:91].

FIG. 17 depicts a non-linear pad-value generator 1700 in
accordance with another embodiment. Generator 1700
includes three LFSRs 1705, 1710, and 1715. A non-linear
circuit, block 1615 of FIG. 16 in this embodiment, combines
ninety bits from LFSR 1705 with ninety bits from LFSR
1710 to produce ninety-bit pad values PAD[2:91]. A single
bit from the third LFSR 1715 pseudo-randomly gates the
clock signal to LFSRs 1705 and 1710 to make the pad-value
sequence more erratic. The three LFSRs have different jump
and repetition rates. LFSR 1715 is a serial LFSR in this
embodiment, a bit from which is used to selectively enable
the remaining L.FSRs.

FIG. 18 illustrates how a security circuit 1800 similar to
pad-value generator 1700 of FIG. 17 can be physically
instantiated as a security stripe 1805 within a physical
interface 1810 in the manner outlined previously in connec-
tion with FIG. 15. Each block indicated by a “Q” or an “R”
represents the sequential and combinatorial logic associated
with one bit of a parallel LFSR. Block R[1], for example,
provides an exclusive OR of its contents and that from block
R[2] as input to block R[127]. The interconnections between
the block illustrate the interconnectivity provided by hori-
zontal and vertical wire tracks of an integrated memory die
upon which is instantiated generator 1700 of FIG. 17. The
LFSRs are specified with jump lengths selected for reduced
routing.

FIG. 19 depicts a memory die 1900 in accordance with an
embodiment that supports a multi-modal security circuit. In
one mode, the security circuit issues a sequence of pad
values as detailed previously. In another mode, much of the
resources employed to generate the pad values are employed
to calculate the key value used to seed pad-value generation.

Die 1900 uses an asymmetric key algorithm, such as
RSA, to share a starting pad value with an associated
controller. Calculating the starting pad value involves find-
ing the product of a public and a private key, both of which
can be large numbers. Binary keys of 512 or 1024 bits are
common. The process of calculating the product of large

US 9,465,961 B2

15

numbers can be broken down into a sequence of multiply-
accumulate operations and act on subsets of the bits of the
larger numbers. Hardware that performs these operations,
commonly referred to as a multiplier-accumulator (MAC, or
MAC unit), are well known to those of skill in the art; a
detailed discussion is therefore omitted.

Die 1900 is configured to include a MAC for calculating
an initial pad value from a shared key, conveyed from the
memory controller, and a private key stored in non-volatile
memory 1903 (e.g., antifuse- or fuse-based storage ele-
ments, or a laser-programmed storage elements). Die 1900
also includes DRAM memory banks Bank[2.0], each of
which supports a row of sense amplifiers for reading from
and writing to memory. During the key-exchange process,
the sense amplifiers are used as scratch registers to store
mathematical variables, e.g., a K-bit multiplier, a K-bit
multiplicand, and a 2*K-bit product, where K is 1,024 in one
embodiment. The multiplier and multiplicand are respec-
tively conveyed to a shift registers 1905 and a register 1910
as W-bit partial products. These registers are made up of the
same sequential storage elements used to instantiate the shift
registers used for pad-value generation, which are posi-
tioned conveniently adjacent the sense amplifiers as illus-
trated in FIGS. 16 and 18.

The partial products from registers 1905 and 1910 are
encoded using a multiplexer 1913 and the results conveyed
to a W-bit adder 1915, which produces a sum for storage in
another shift register 1920. Partial products from register
1925 are conveyed to the sense amplifiers of memory bank
2, and to a second input of adder 1915 in support of the
accumulate function. Adder 1915 is assembled from all or a
subset of the full adders FADD used in to produce the
non-linear function of the pad generators, and register 1920
is made up of the same sequential storage elements used to
instantiate the shift registers used for pad-value generation.

The ability to switch between key-sharing and pad-gen-
eration configurations is supported by relatively simple
configurable switches that alter the connectivity between the
depicted elements to establish a desired configuration. The
configuration may be selected at initialization, for example
by loading a register on die 1900. When configured as
depicted in FIG. 19, the key-sharing algorithm can be
directed by the memory controller via a command inputs, or
by a controller (not shown) instantiated on die 1900 or
elsewhere.

FIG. 20 includes cut-away views of a through-silicon-via
(TSV) package 2000 and a package-on-package (POP)
2005, both of which are memories that include cryptography
circuitry of the type detailed previously. Package 2000
includes stacked memory dies 2010 and a cryptography die
2015 interconnected by vias, and the resultant stack is
mounted to a package substrate 2020 that provides external
connections to a printed-circuit (PC) board 2025. Package
2005 likewise includes stacked memory dies 2030 and a
cryptography die 2035, but these are interconnected by
bonding wires 2040. As depicted in plan view at the bottom
of FIG. 20, collections of packages 2000 and/or 2005 and the
associated PC board 2025 can form a memory module 2050.
As used herein, the term “memory” can apply to a memory
module, a multi-chip package, or a memory die.

FIG. 21 depicts a memory module 2100 in accordance
with another embodiment. In this embodiment primary data
(DQ) and command (CA) links are deserialized (e.g., 2:1)
before being repeated on secondary links to DRAM [N-1:0].
A cryptographic circuit 2105 can be included in the second-
ary link. Deserialization is commonly done to ease the
timing on the secondary link, but is not necessary. The

10

15

20

25

30

35

40

45

50

55

60

65

16

secondary wire bonds can be routed to a physical pad on the
POP substrate between cryptographic circuit 2105 and
DRAM component(s).

In the foregoing description and in the accompanying
drawings, specific terminology and drawing symbols are set
forth to provide a thorough understanding of the present
invention. In some instances, the terminology and symbols
may imply specific details that are not required to practice
the invention. For example, the interconnection between
circuit elements or circuit blocks may be shown or described
as multi-conductor or single conductor signal lines. Each of
the multi-conductor signal lines may alternatively be single-
conductor signal lines, and each of the single-conductor
signal lines may alternatively be multi-conductor signal
lines. Signals and signaling paths shown or described as
being single-ended may also be differential, and vice-versa.
A signal driving circuit is said to “output™ a signal to a signal
receiving circuit when the signal driving circuit asserts (or
de-asserts, if explicitly stated or indicated by context) the
signal on a signal line coupled between the signal driving
and signal receiving circuits.

An output of a process for designing an integrated circuit,
or a portion of an integrated circuit, comprising one or more
of the circuits described herein may be a computer-readable
medium such as, for example, a magnetic tape or an optical
or magnetic disk. The computer-readable medium may be
encoded with data structures or other information describing
circuitry that may be physically instantiated as an integrated
circuit or portion of an integrated circuit. Although various
formats may be used for such encoding, these data structures
are commonly written in Caltech Intermediate Format (CIF),
Calma GDS II Stream Format (GDSII), or Electronic Design
Interchange Format (EDIF). Those of skill in the art of
integrated circuit design can develop such data structures
from schematic diagrams of the type detailed above and the
corresponding descriptions and encode the data structures on
computer readable medium. Those of skill in the art of
integrated circuit fabrication can use such encoded data to
fabricate integrated circuits comprising one or more of the
circuits described herein.

While the present invention has been described in con-
nection with specific embodiments, variations of these
embodiments will be obvious to those of ordinary skill in the
art. Moreover, some components are shown directly con-
nected to one another while others are shown connected via
intermediate components. In each instance the method of
interconnection, or “coupling,” establishes some desired
electrical communication between two or more circuit
nodes, or terminals. Such coupling may often be accom-
plished using a number of circuit configurations, as will be
understood by those of skill in the art. Therefore, the spirit
and scope of the appended claims should not be limited to
the foregoing description. Only those claims specifically
reciting “means for” or “step for” should be construed in the
manner required under the sixth paragraph of 35 U.S.C.
§112.

What is claimed is:
1. A memory system comprising:
a memory controller to issue write data, the memory
controller including:
a first link-pad generator to issue a sequence of first pad
values of a first pad width; and
a first cipher circuit connected to the first link-pad
generator, the first cipher circuit to combine the write
data with the first pad values to produce ciphertext of
the first pad width;

US 9,465,961 B2

17

data links extending from the memory controller to con-

vey the ciphertext; and

a memory device coupled to the memory controller via a

subset of the data links to receive a subset of the

ciphertext, the memory device including:

a second link-pad generator to issue a sequence of
second pad values of a second pad width, the second
link-pad generator including a width-selection port
to control the second pad width; and

a second cipher circuit connected to the second link-
pad generator, the second cipher circuit to combine
the subset of the ciphertext with the second pad
values to recover a subset of the write data.

2. The memory system of claim 1, the first link-pad
generator including a second width-selection port to control
the first pad width.

3. The memory system of claim 1, wherein the memory
controller supports N data channels to a maximum of N

5

10

15

18

memory devices, including the memory device, the memory
controller including N first link-pad generators, one first-
link-pad generator for each of the N memory devices.

4. The memory system of claim 3, further comprising M
memory devices, where M is less than N, and wherein the
memory controller disables N minus M of the first link-pad
generators.

5. The memory controller of claim 4, further comprising
a width-selection register to control the first pad width.

6. The memory system of claim 1, wherein the second
link-pad generator derives the sequence of second pad
values from a sequence of wider pad values.

7. The memory system of claim 1, further comprising a
width-selection register coupled to the width-selection port
to control a width of the second pad values.

#* #* #* #* #*

